RSS

Selasa, 03 November 2009

ORGANISASI BERKAS INDEKS SEQUENTIAL

Untuk menyimpan data ke dalam memori komputer, tentu memori tersebut diberi identitas (yang disebut dengan alamat/ address) agar ketika data tersebut diperlukan kembali, komputer bisa mendapatkannya sesuai dengan data yang pernah diletakkan di sana.
Untuk media penyimpanan yang bersifat sequential access storage device (SASD) seperti kaset (magnetic tape), alamat tersebut tidak terlalu dipusingkan karena pasti data disimpan secara berurutan (sequential/ consecutive) mulai dari depan hingga ke akhir bagian dari pita kaset. Begitu juga dengan data yang diorganisasi secara sequential, di alamat manapun data disimpan, data akan tetap diakses secara berurutan pula, mulai dari record pertama hingga ke record terakhir.

Pengertian Berkas Indeks Sequential
Salah satu cara yang paling efektif untuk mengorganisasi kumpulan record-record yang membutuhkan akses record secara sequential maupun akses record secara individu berdasarkan nilai key adalah organisasi berkas indeks sequential. Jadi berkas indeks sequential merupakan kombinasi dari berkas sequential dan berkas relatif.

File Organization Index Sequential
Berikut akan dibahas mengenai organisasi berkas index sequential. Contoh sederhana dari organisasi ini adalah susunan data yang ada di sebuah buku kamus. Kita bisa mengakses buku kamus tersebut secara sequential (berurutan), maupun melalui index (daftar isi)nya. Jadi, file organization index sequential adalah file yang disusun sedemikian rupa sehingga dapat diakses secara sequential maupun secara direct (langsung), atau kombinasi keduanya, direct dan sequential.
Ada dua pendekatan dasar dalam menyusun organisasi berkas semacam ini, yaitu (1) blok index dan data, dan (2) prime dan overflow data area. Untuk cara pertama, kita menyusun data dengan lebih memperhatikan ke data yang bersifat logik, bukan fisik. Jadi, data dan index diorganisasikan ke dalam blok-blok. Blok-blok index (daftar isi dalam buku kamus) diorganisasi secara sequential (consecutive) dan bertingkat-tingkat (misal setiap blok hanya berisi 4 record index yang berisi key field dan pointer). Setiap tingkat akan menuju ke blok data (misal setiap blok hanya berisi 5 record data) di tingkat selanjutnya dan seterusnya menuju ke blok data yang akan mendapatkan record yang dicari secara direct.
Bila dilakukan penyisipan data dan blok tertentu (tempat data baru itu) sudah penuh (tidak ada tempat kosong/ padding lagi), maka akan dilakukan reorganisasi blok dengan membentuk blok baru. Tentu, mungkin saja perubahan ini akan berdampak pada isi blok index-nya.
Pendekatan kedua adalah dengan lebih memperhatikan aspek karakteristik dari hardware (fisik) alat penyimpanan datanya. Biasanya disimpan di hard disk yang memiliki cylinder dan track. Caranya hampir sama dengan cara di pendekatan pertama, hanya di sini lebih ditekankan pada aspek fisik. Jadi, yang bertingkat-tingkat adalah cylender-nya dan blok datanya ditulis secara consecutive di setiap track (misalkan 1 cylinder berisi 4 track, nomor 0 sampai 3). Index (pencarian data) tertinggi disebut dengan master index, dari master index berturut-turut menuju ke blok-blok index tingkat berikutnya hingga meraih record data yang berada di track-nya. Bila dilakukan penyisipan data dan track tertentu (tempat data baru itu) sudah penuh (tidak ada tempat kosong/ padding lagi), maka akan dilakukan reorganisasi track dengan membentuk track baru.Tentu, track baru itu di luar prime data file-nya, yaitu di overflow data area-nya.
Struktur Pohon
Sebuah pohon (tree) adalah struktur dari sekumpulan elemen, dengan salah satu elemennya merupakan akarnya atau root dan sisanya yang lain merupakan bagian-bagian pohon yang terorganisasi dalam susunan berhirarki dengan root sebagai puncaknya.
Contoh umum dimana struktur pohon sering ditemukan adalah pada penyusunan silsilah keluarga, hirarki suatu organisasi, daftar isi suatu buku dan lain sebagainya.

Secara rekursif suatu struktur pohon dapat didefinisikan sebagai berikut :
- Sebuah simpul tunggal adalah sebuah pohon.
- Bila terdapat simpul n, dan beberapa sub pohon T1, T2, ..., Tk, yang tidak saling berhubungan, yang masing-masing akarnya adalah n1, n2, ..., nk, dari simpul / sub pohon ini dapat dibuat sebuah pohon baru dengan n sebagai akar dari simpul-simpul n1, n2, ..., nk.



Pohon Biner
Salah satu tipe pohon yang paling banyak dipelajari adalah pohon biner. Pohon Biner adalah pohon yang setiap simpulnya memiliki paling banyak dua buah cabang / anak.
Adapun jenis akses yang diperbolehkan, yaitu :
- Akses Sekuensial
- Akses Direct

Sedangkan jenis prosesnya adalah :
- Batch
- Interactive
Struktur Berkas Indeks sekuensial
- Indeks - Binary Search Tree
- Data - Sekuensial


Implementasi Organisasi Berkas Indeks Sequential
Ada 2 pendekatan dasar untuk mengimplementasikan konsep dari organisasi berkas indeks sequential :
- Blok Indeks dan Data (Dinamik)
- Prime dan Overflow Data Area (Statik)
Kedua pendekatan tersebut menggunakan sebuah bagian indeks dan sebuah bagian data, dimana masing-masing menempati berkas yang terpisah.
Alasannya :
Karena mereka diimplementasikan pada organisasi internal yang berbeda. Masing-masing berkas tersebut harus menempati pada alat penyimpan yang bersifat Direct Access Storage Device (DASD).

Blok Indeks Dan Data
Pada pendekatan ini berkas indeks dan berkas data diorganisasikan dalam blok. Berkas indeks mempunyai struktur tree, sedangkan berkas data mempunyai struktur sequential dengan ruang bebas yang didistribusikan antar populasi record.
Permintaan untuk akses data dalam urutan sequential dilayani dengan mengakses blok data dalam urutan sequential. Sebagai catatan blok data merupakan consecutive secara logik dan bukan consecutive secara fisik. Dalam hal ini, blok data harus dihubungkan secara bersama dalam urutan secara logik.

Prime dan Overflow Data Area
Pendekatan lain untuk mengimplementasikan berkas indeks sequential adalah berdasarkan struktur indeks dimana struktur indeks ini lebih ditekankan pada karakteristik fisik dari penyimpanan, dibandingkan dengan distribusi secara logik dari nilai key.
Indeksnya ada beberapa tingkat, misalnya tingkat cylinder indeks dan tingkat track indeks. Berkas datanya secara umum diimplementasikan sebagai 2 berkas, yaitu prime area dan overflow area.
Misalnya setiap cylinder dari alat penyimpanan mempunyai 4 track. Pada berkas binatang ada 6 cylinder yang dialokasikan pada prime data area. Track pertama (nomor 0) dari setiap cylinder berisi sebuah indeks pada record key dalam cylinder tersebut.
Entry pada indeks ini adalah dalam bentuk :
nilai key terendah, nomor track
Dalam sebuah track data, tracknya disimpan secara urut berdasarkan nilai key.
Tingkat pertama dari indeks dalam berkas indeks dinamakan master indeks.
Entry pada indeks ini adalah dalam bentuk :
nilai key tertinggi, pointer
Tingkat kedua dari indeks dinamakan cylinder indeks.
Indeks ini berisi pointer pada berkas prime data dan entry-nya dalam bentuk :
nilai key tertinggi, nomor cylinder

Jika sebuah permintaan untuk mengakses record tertentu, misal kita akan mengakses dengan nilai key BAT, pertama akan dicari pada master indeks. Karena BAT ada di depan LYNX, maka pointer dari LYNX akan menunjuk ke cylinder index. Karena BAT ada di depan ELEPHANT, maka pointer dari ELEPHANT akan menunjuk ke track 0 dari cylinder 1. Karena BAT ada di belakang BABOON dan di depan COW, maka pointer dari BABOON akan menunjuk ke track 2, yang mencari secara sequential sampai BAT ditemukan.
Permintaan untuk mengakses data secara sequential akan dilayani dengan mengakses cylinder dan track dari berkas data prime secara urut.
Misal setiap track dari berkas prime data mempunyai ruang yang cukup untuk menampung 5 record (jika penyisipan dan penghapusan terhadap berkas dilakukan, maka akan dibentuk padding).

Permintaan :
INSERT ARMADILLO
Agak sulit ditangani. Pencarian struktur indeks menyatakan bahwa ARMADILLO seharusnya menempati track 1 dari cylinder 1, tetapi track tersebut sudah penuh.
Untuk mengatasi keadaan tersebut diperlukan overflow data area. Overflow data area ini merupakan berkas yang terpisah dari prime data area, tetapi overflow area ini ditunjukkan oleh entry prime data area.
Karena ARMADILLO seharusnya berada setelah kelima entry pada track 1 dari cylinder 1, tetapi karena track ini sudah penuh, maka ARMADILLO dipindahkan ke overflow data area. Indeks track dari cylinder 1 harus dimodifikasi untuk memperlihatkan bahwa ada sebuah record pada overflow area yang secara logik seharusnya menempati pada akhir dari track 1, sehingga penambahan dari entry itu adalah :

Dengan ovfl-ptr adalah :

Permintaan :
INSERT CAT
INSERT BEAR
INSERT BOBCAT
Akan mengisi track 2 dari cylinder 1 pada prime data area, tetapi pengisian tersebut mengakibatkan penggunaan overflow area. Perhatikan CAT dipindahkan ke overflow area, karena entry pada prime track tidak hanya harus dalam urutan, tetapi juga entry tersebut harus mendahului suatu entry overflow dari track tersebut.
Hasilnya ditunjukkan pada gambar di bawah ini :


Permintaan :
INSERT ANT

Deklarasi Berkas Indeks Sequential dalam bahasa COBOL :
SELECT filename ASSIGN TO implementor-name[,implementor-name2]
AREA
RESERVE integer
AREA
ORGANIZATION IS INDEXED
SEQUENTIAL
ACCESS MODE IS RANDOM
DYNAMIC
RECORD KEY IS dataname-1
[ FILE STATUS IS dataname-2 ].


Sumber : www.hanum.staff.gunadarma.ac.id
www.google.com

Tidak ada komentar:

Posting Komentar